In this paper, we introduce the concept of pexider Hilbert C∗-module higher {An, Bn, Dn}-derivations. Specifically, we focus on a Hilbert C∗-module M and provide a comprehensive characterization of these pexider Hilbert C∗-module higher {An, Bn, Dn}-derivations {Φn}∞ n=0 on M in relation to pexider Hilbert C∗-module {αn, βn, δn}-derivations {φn}∞ n=1 on M. We demonstrate that for every pexider Hilbert C∗-module higher {An, Bn, Dn}-derivation {Φn}∞ n=0 on M, there exists a unique sequence of pexider Hilbert C∗-module {αn, βn, δn}-derivations {φn}∞ n=1 on M such that $$\left\{\begin{array}{lr}\varphi_n=\sum_{k=1}^n\Big(\sum_{\sum_{j=1}^k r_j=n}(-1)^{k-1}~r_1\Phi_{r_1}\Phi_{r_2}\ldots \Phi_{r_k}\Big), \\\alpha_n=\sum_{k=1}^n\Big(\sum_{\sum_{j=1}^k r_j=n}(-1)^{k-1}~r_1A_{r_1}A_{r_2}\ldots A_{r_k}\Big), \\\beta_n=\sum_{k=1}^n\Big(\sum_{\sum_{j=1}^k r_j=n}(-1)^{k-1}~r_1B_{r_1}B_{r_2}\ldots B_{r_k}\Big), \\\delta_n=\sum_{k=1}^n\Big(\sum_{\sum_{j=1}^k r_j=n}(-1)^{k-1}~r_1D_{r_1}D_{r_2}\ldots D_{r_k}\Big), \end{array}\right. $$ for all positive integers n, where the inner summation is taken over all positive integers rj with Σk j=1 rj = n.